Mock Exam Graph Theory

2022–2023, duration : 2 hours

- It is absolutely not allowed to use calculators, phones, computers, books, notes, the help of others or any other aids.
- Always make sure to state clearly any results from the lecture notes you are using.
- Write the answer to each question on a separate sheet, with your name and student number on each sheet. This is worth 10 points (out of a total of 100).

Exercise 1 (20 pts).

Prove that a planar graph in which all vertices have degree ≥ 5 satisfies $v(G) \geq 12$.

Exercise 2 (20 pts).

We consider the complete graph K_5 on five vertices, together with edge weights w(e) given by the following table

$i \setminus j$	1	2	3	4	5
1					
2	1				
3	3	2			
4	7	9	10		
5	4	6	5	8	

(The table indicates w(ij) for j < i.)

Apply Kruskal's algorithm to determine a minimum spanning tree. Make sure to clearly indicate, for each step of the algorithm, what action the algorithm takes.

Exercise 3 (30 pts)

Let G be a graph and \overline{G} be its complement, i.e. $V(\overline{G}) = V(G), E(\overline{G}) = {\binom{V(G)}{2}} \setminus E(G).$

a) Show that $\chi(G) \cdot \chi(\overline{G}) \ge v(G)$.

(*Hint*: How do $\omega(\overline{G})$ and $\alpha(\overline{G})$ relate to $\omega(G)$ and $\alpha(G)$?)

b) Deduce that $\chi(G) + \chi(\overline{G}) \ge 2\sqrt{v(G)}$.

Exercise 4 (20 pts).

Show that for every k there is a bipartite graph with list chromatic number > k.